Increased environmental stochasticity due to climate change will intensify temporal variance in the life-history traits, and especially breeding probabilities, of long-lived iteroparous species. These changes may decrease individual fitness and population viability and is therefore important to monitor. In wild animal populations with imperfect individual detection, breeding probabilities are best estimated using capture-recapture methods. However, in many vertebrate species (e.g., amphibians, turtles, seabirds), nonbreeders are unobservable because they are not tied to a territory or breeding location. Although unobservable states can be used to model temporary emigration of nonbreeders, there are disadvantages to having unobservable states in capture-recapture models. The best solution to deal with unobservable life-history states is therefore to eliminate them altogether. Here, we achieve this objective by fitting novel multievent-robust design models which utilize information obtained from multiple surveys conducted throughout the year. We use this approach to estimate annual breeding probabilities of capital breeding female elephant seals (Mirounga leonina). Conceptually, our approach parallels a multistate version of the Barker/robust design in that it combines robust design capture data collected during discrete breeding seasons with observations made at other times of the year. A substantial advantage of our approach is that the nonbreeder state became "observable" when multiple data sources were analyzed together. This allowed us to test for the existence of state-dependent survival (with some support found for lower survival in breeders compared to nonbreeders), and to estimate annual breeding transitions to and from the nonbreeder state with greater precision (where current breeders tended to have higher future breeding probabilities than nonbreeders). We used program E-SURGE (2.1.2) to fit the multievent-robust design models, with uncertainty in breeding state assignment (breeder, nonbreeder) being incorporated via a hidden Markov process. This flexible modeling approach can easily be adapted to suit sampling designs from numerous species which may be encountered during and outside of discrete breeding seasons.
Keywords: auxiliary data; breeding propensity; elephant seal; incidental observations; intermittent breeding; robust design; unobservable state.