Bioerodable Ketamine-Loaded Microparticles Fabricated Using Dissolvable Hydrogel Template Technology

J Pharm Sci. 2019 Mar;108(3):1220-1226. doi: 10.1016/j.xphs.2018.10.029. Epub 2018 Oct 26.

Abstract

For severe cancer-related pain that is not relieved adequately by escalating doses of oral or parenterally administered strong opioid analgesics such as morphine, alone or in combination with an adjuvant drug such as ketamine, more invasive dosing routes may be warranted. One such approach involves surgical implantation of an intrathecal pump to deliver small doses of analgesic or adjuvant drugs in close proximity to the receptors that transduce their pain-relieving effects. However, the use of implanted devices is associated with a range of catheter-related problems. To address this, we have developed biodegradable microparticles loaded with the analgesic adjuvant drug, ketamine, for sustained release after a single bolus intrathecal injection. Drug-loaded poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared using a dissolvable hydrogel template. Using PLGA with 3 different ratios of lactic acid to glycolic acid (L/G), relatively high ketamine loading and homogenous particle shape and size were achieved. Specifically, ketamine loading of PLGA5050, PLGA7525, and PLGA8515 in ester-terminated microparticles was 20.0%, 20.4%, and 18.9%, respectively. The microparticles were within the desired size range (20 μm diameter and 30 μm height) and in vitro release was sustained for ≥14 days with an acceptable initial burst release (∼10%-20%) achieved.

Keywords: PLGA types; drug delivery; intractable cancer-related pain; ketamine; microparticles; poly(lactic-co-glycolic acid); sustained release.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorbable Implants*
  • Analgesics / administration & dosage*
  • Analgesics / pharmacokinetics
  • Cancer Pain / drug therapy
  • Delayed-Action Preparations / administration & dosage
  • Delayed-Action Preparations / pharmacokinetics
  • Drug Carriers / chemistry*
  • Drug Compounding / methods*
  • Drug Liberation
  • Humans
  • Hydrogels / chemistry
  • Ketamine / administration & dosage*
  • Ketamine / pharmacokinetics
  • Microspheres
  • Particle Size
  • Polyesters / chemistry

Substances

  • Analgesics
  • Delayed-Action Preparations
  • Drug Carriers
  • Hydrogels
  • Polyesters
  • poly(lactide)
  • Ketamine