Retinoic acid-inducible gene I (RIG-I), a pivotal cytosolic sensor, recognizes viral RNAs to initiate antiviral innate immunity. However, posttranslational regulation of RIG-I signaling is not well understood. We report here that nuclear Dbf2-related kinase 2 (NDR2) functions as a crucial positive regulator of the RIG-I-mediated antiviral immune response. Overexpression of NDR2 or its kinase-inactive mutants potentiates RNA virus-induced production of type I interferons and proinflammatory cytokines and dampens viral replication. NDR2 conditional knockout mice (Lysm+NDR2f/f) show an impaired antiviral immune response. Mechanistically, NDR2 directly associates with RIG-I and TRIM25, thus facilitating the RIG-I/TRIM25 complex and enhancing the TRIM25-mediated K63-linked polyubiquitination of RIG-I, which is required for the RIG-I-mediated antiviral immune response. Furthermore, NDR2 expression is notably down-regulated in peripheral blood from respiratory syncytial virus-infected patients and in virus-infected macrophages. Collectively, these findings provide insights into the function of NDR2 in antiviral immunity and its related clinical significance.