Three-dimensional (3D) hierarchical graphene oxide-NiFe layered double hydroxide (GO-NiFe LDH) composite with sandwich-like structure is fabricated using a facile one-pot hydrothermal reaction. Electron microscopy images demonstrate that the GO-NiFe LDH composite possesses a highly porous and well-ordered structure. Both sides of the GO are fully covered by the LDH nanosheets, resulting in the sandwich-like architecture. The adsorption performance of the GO-NiFe LDH composite and pure NiFe LDH for three anionic pollutants, namely, Congo red (CR), methyl orange (MO) and hexavalent chromium ion [Cr(VI)] is systematically investigated. The presence of GO in the GO-NiFe LDH composite leads to the better adsorption capability and faster adsorption kinetics of this composite compared with the NiFe LDH microspheres. The pseudo-second-order kinetic model can well represent the adsorption kinetics, and the Langmuir isotherm model provides a better description for the adsorption isotherms. The GO-NiFe LDH composite demonstrates appreciable potential in alleviating anionic pollutants from the aquatic environment as shown by its excellent adsorption capability towards CR, MO and Cr(VI).
Keywords: Adsorption; Anionic pollutant; GO; Hierarchical; LDH nanosheet.
Copyright © 2019 Elsevier B.V. All rights reserved.