Although various photothermal therapy (PTT) nanoagents have been developed in recent years, the rational design and easy synthesis of a PTT nanoplatform with improved near-infrared (NIR) absorption have remained challenging. Herein, via a facile one-pot solvothermal strategy, hydrophilic nanosheet-assembled flower-like Fe7S8/Bi2S3 superstructures were fabricated successfully. Such nanoflowers exhibit improved NIR absorption, which is 1.54 times higher than that of pure Bi2S3 nanosheets at a wavelength of 808 nm. Attractively, these nanoflowers could serve as a drug delivery carrier with controlled release under pH/NIR stimuli and display a fascinating chemo-photothermal synergetic therapeutic effect both in vitro and vivo. The resulting nanoflowers may open up a way for the design of other nanoagents with an improved NIR absorption and chemo-photothermal cancer therapy effect.