The Ptr1 Locus of Solanum lycopersicoides Confers Resistance to Race 1 Strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by Recognizing the Type III Effectors AvrRpt2 and RipBN

Mol Plant Microbe Interact. 2019 Aug;32(8):949-960. doi: 10.1094/MPMI-01-19-0018-R. Epub 2019 Jun 12.

Abstract

Race 1 strains of Pseudomonas syringae pv. tomato, which cause bacterial speck disease of tomato, are becoming increasingly common and no simply inherited genetic resistance to such strains is known. We discovered that a locus in Solanum lycopersicoides, termed Pseudomonas tomato race 1 (Ptr1), confers resistance to race 1 P. syringae pv. tomato strains by detecting the activity of type III effector AvrRpt2. In Arabidopsis, AvrRpt2 degrades the RIN4 protein, thereby activating RPS2-mediated immunity. Using site-directed mutagenesis of AvrRpt2, we found that, like RPS2, activation of Ptr1 requires AvrRpt2 proteolytic activity. Ptr1 also detected the activity of AvrRpt2 homologs from diverse bacteria, including one in Ralstonia pseudosolanacearum. The genome sequence of S. lycopersicoides revealed no RPS2 homolog in the Ptr1 region. Ptr1 could play an important role in controlling bacterial speck disease and its future cloning may shed light on an example of convergent evolution for recognition of a widespread type III effector.

Keywords: AvrRpt2; Mr5; NLR-triggered immunity; RIN4; RPS2; disease resistance.

MeSH terms

  • Bacterial Proteins / metabolism
  • Disease Resistance* / genetics
  • Genome, Bacterial / genetics
  • Membrane Transport Proteins* / genetics
  • Membrane Transport Proteins* / metabolism
  • Pseudomonas syringae* / classification
  • Pseudomonas syringae* / physiology
  • Ralstonia* / classification
  • Ralstonia* / physiology
  • Solanum* / genetics
  • Solanum* / microbiology

Substances

  • Bacterial Proteins
  • Membrane Transport Proteins
  • avrRpt2 protein, Pseudomonas syringae