Modeling and tailoring of multispectral Fano resonance in plasmonic system employing nanoslit-antenna array is demonstrated and investigated. Efficient control of the multiple Fano profile can be manipulated, where the overall spectral is achieved by the separate contributions from the fundamental subgroups plasmonic resonance eigenstates. A polarization-selective strategy on nano-antennas resonance is proposed to shed light on the efficient manipulation of the multiple Fano resonances. Theory prediction of TM-1 surface mode excited in the system and thorough dispersion analysis of the supported Bloch modes provides evidence for understanding the origin of the transmission spectra. Compact nanophotonics planar optical linear-polarizer in the proposed nanostructure is investigated and demonstrated, where flexible Fano resonance control over the profile, linewidth and spectral contrast is appealing for applications such as sensing, switches and multifunctional nanophotonics devices.