Rapid risk-stratification of patients with acute traumatic brain injury (TBI) would inform management decisions and prognostication. The objective of this serum biomarker study (Biomarkers of Injury and Outcome [BIO]-Progesterone for Traumatic Brain Injury, Experimental Clinical Treatment [ProTECT]) was to test the hypothesis that serum biomarkers of structural brain injury, measured at a single, very early time-point, add value beyond relevant clinical covariates when predicting unfavorable outcome 6 months after moderate-to-severe acute TBI. BIO-ProTECT utilized prospectively collected samples obtained from subjects with moderate-to-severe TBI enrolled in the ProTECT III clinical trial of progesterone. Serum samples were obtained within 4 h after injury. Glial fibrillary acidic protein (GFAP), S100B, αII-spectrin breakdown product of molecular weight 150 (SBDP150), and ubiquitin C-terminal hydrolase-L1 (UCH-L1) were measured. The association between log-transformed biomarker levels and poor outcome, defined by a Glasgow Outcome Scale-Extended (GOS-E) score of 1-4 at 6 months post-injury, were estimated via logistic regression. Prognostic models and a biomarker risk score were developed using bootstrapping techniques. Of 882 ProTECT III subjects, samples were available for 566. Each biomarker was associated with 6-month GOS-E (p < 0.001). Compared with a model containing baseline patient variables/characteristics, inclusion of S100B and GFAP significantly improved prognostic capacity (p ≤ 0.05 both comparisons); conversely, UCH-L1 and SBDP did not. A final predictive model incorporating baseline patient variables/characteristics and biomarker data (S100B and GFAP) had the best prognostic capability (area under the curve [AUC] = 0.85, 95% confidence interval [CI]: CI 0.81-0.89). Very early measurements of brain-specific biomarkers are independently associated with 6-month outcome after moderate-to-severe TBI and enhance outcome prediction.
Keywords: GFAP; S100B; UCH-L1; biomarker; traumatic brain injury.