β-Catenin and Yes-Associated Protein 1 Cooperate in Hepatoblastoma Pathogenesis

Am J Pathol. 2019 May;189(5):1091-1104. doi: 10.1016/j.ajpath.2019.02.002. Epub 2019 Feb 19.

Abstract

Hepatoblastoma (HB), the most common pediatric primary liver neoplasm, shows nuclear localization of β-catenin and yes-associated protein 1 (YAP1) in almost 80% of the cases. Co-expression of constitutively active S127A-YAP1 and ΔN90 deletion-mutant β-catenin (YAP1-ΔN90-β-catenin) causes HB in mice. Because heterogeneity in downstream signaling is being identified owing to mutational differences even in the β-catenin gene alone, we investigated if co-expression of point mutants of β-catenin (S33Y or S45Y) with S127A-YAP1 led to similar tumors as YAP1-ΔN90-β-catenin. Co-expression of S33Y/S45Y-β-catenin and S127A-YAP1 led to activation of Yap and Wnt signaling and development of HB, with 100% mortality by 13 to 14 weeks. Co-expression with YAP1-S45Y/S33Y-β-catenin of the dominant-negative T-cell factor 4 or dominant-negative transcriptional enhanced associate domain 2, the respective surrogate transcription factors, prevented HB development. Although histologically similar, HB in YAP1-S45Y/S33Y-β-catenin, unlike YAP1-ΔN90-β-catenin HB, was glutamine synthetase (GS) positive. However, both ΔN90-β-catenin and point-mutant β-catenin comparably induced GS-luciferase reporter in vitro. Finally, using a previously reported 16-gene signature, it was shown that YAP1-ΔN90-β-catenin HB tumors exhibited genetic similarities with more proliferative, less differentiated, GS-negative HB patient tumors, whereas YAP1-S33Y/S45Y-β-catenin HB exhibited heterogeneity and clustered with both well-differentiated GS-positive and proliferative GS-negative patient tumors. Thus, we demonstrate that β-catenin point mutants can also collaborate with YAP1 in HB development, albeit with a distinct molecular profile from the deletion mutant, which may have implications in both biology and therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism*
  • Animals
  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism*
  • Carcinoma, Hepatocellular / genetics
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology*
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liver Neoplasms / genetics
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology*
  • Male
  • Mice
  • Mutation*
  • Prognosis
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • Tumor Cells, Cultured
  • YAP-Signaling Proteins
  • beta Catenin / genetics
  • beta Catenin / metabolism*

Substances

  • Adaptor Proteins, Signal Transducing
  • Biomarkers, Tumor
  • CTNNB1 protein, human
  • Transcription Factors
  • YAP-Signaling Proteins
  • YAP1 protein, human
  • beta Catenin