10-Phenyltriazoyl Artemisinin is a Novel P-glycoprotein Inhibitor that Suppresses the Overexpression and Function of P-glycoprotein

Curr Pharm Des. 2018;24(46):5590-5597. doi: 10.2174/1381612825666190222155700.

Abstract

Background: The effect of drugs on ATP-binding cassette transporters, especially permeabilityglycoprotein (P-gp), is an important consideration during new anti-cancer drug development.

Objective: In this context, the effects of a newly synthesized artemisinin derivative, 10-(4-phenyl-1H-1,2,3- triazol)-artemisinin (5a), were evaluated on P-gp expression and function.

Methods: Reverse transcript polymerase chain reaction and immunoblotting techniques were used to determine the effect of 5a on P-gp expression in LS174T cells. In addition, the ability of 5a to work as either a substrate or an inhibitor of P-gp was investigated through different methods.

Results: The results revealed that 5a acts as a novel P-gp inhibitor that dually suppresses the overexpression and function of P-glycoprotein. Co-treatment of LS174T cell line, human colon adenocarcinoma cell line, with 5a and paclitaxel recovered the anticancer effect of paclitaxel by controlling the acquired drug resistance pathway. The overexpression of P-gp induced by rifampin and paclitaxel in a colorectal cell line was suppressed by 5a which could be a novel inhibitory substrate inhibiting the transport of paclitaxel by P-gp.

Conclusion: The results revealed that 5a can be classified as a type B P-gp inhibitor (with both substrate and inhibitor activities) with an additional function of suppressing P-gp overexpression. The results might be clinically useful in the development of anticancer drugs against cancers with multidrug resistance.

Keywords: Artemisinin; immunoblotting techniques; p-glycoprotein; paclitaxel; rifampin; triazolyl artemisinin..

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B / antagonists & inhibitors*
  • ATP Binding Cassette Transporter, Subfamily B / genetics
  • ATP Binding Cassette Transporter, Subfamily B / metabolism
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism*
  • Artemisinins / chemistry*
  • Artemisinins / pharmacology*
  • Cell Line
  • Cell Survival / drug effects
  • Gene Expression Regulation / drug effects
  • Humans
  • Molecular Structure
  • Paclitaxel
  • RNA, Messenger / metabolism

Substances

  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Artemisinins
  • RNA, Messenger
  • Paclitaxel