Versatile Surface Modification of TFC Membrane by Layer-by-Layer Assembly of Phytic Acid-Metal Complexes for Comprehensively Enhanced FO Performance

Environ Sci Technol. 2019 Mar 19;53(6):3331-3341. doi: 10.1021/acs.est.8b06628. Epub 2019 Mar 7.

Abstract

Polyamide TFC membranes are widely applied in membrane-based water treatment but generally suffer various fouling problems. In this work, the layer-by-layer assembly of phytic acid (PA) and metal ions (M) is constructed on the surface TFC membrane for the first time, to improve the bio/organic fouling resistances and separation performance of TFC membranes simultaneously. The PA molecule with six phosphonic acid groups of strong chelation ability acts as the organic ligand, and the metal ion acts as the inorganic cross-linker, inducing the assembly of hydrophilic and antibacterial PA-M (Ag or Cu) complexes on the TFC membrane surface. Various characterizations including FTIR, XPS, SEM, AFM, and EDX are employed to confirm the successful and uniform modification of PA-M. FO performance of the PA-M modified TFC membranes, i.e., TFC_PA-Ag and TFC_PA-Cu, is optimized by varying PA concentration and assembly cycles, where the water flux can be improved by 57% and 68%, respectively, without compromising the membrane selectivity. Additionally, the PA-M modification improves the biofouling and organic fouling resistances of the TFC membrane remarkably, owing to the enhanced antibacterial ability and hydrophilicity. The modified TFC membranes are also proven to show the excellent stability by the quantitative release test.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biofouling*
  • Coordination Complexes*
  • Membranes, Artificial
  • Osmosis
  • Phytic Acid

Substances

  • Coordination Complexes
  • Membranes, Artificial
  • Phytic Acid