14-O-[(4,6-Diaminopyrimidine-2-yl)thioacetyl] mutilin (DPTM), a novel pleuromutilin candidate with a substituted pyrimidine moiety, has been confirmed to possess excellent antibacterial activity against Gram-positive bacteria. To illustrate the pharmacokinetic profile after intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administrations with DPTM, as well as tissue distribution and excretion via urine and feces in vivo, a specific, sensitive and robust HPLC-MS/MS method was first developed to determine DPTM in rat plasma, various tissues, urine and feces. The plasma, tissues, urine and feces samples were treated by protein precipitation with acetonitrile using tiamulin fumarate as an internal standard (IS). This method which was achieved on an HPLC system detector equipped with an ESI interface, was sensitive with 5 ng/mL as the lower limit of detection and exhibited good linearity (R² > 0.9900) in the range of 5⁻4000 ng/mL for plasma, various tissues, urine and feces, as well as intra-day precision, inter-day precision and accuracy. The matrix effects ranged from 94.2 to 109.7% with RSD ≤ 9.4% and the mean extraction recoveries ranged from 95.4 to 109.5% in plasma, tissue homogenates, urine and feces (RSD ≤ 9.9). After i.v., i.m. and p.o. administrations, DPTM was rapidly absorbed and metabolized in rats with the half-life (t1/2) of 1.70⁻1.86, 3.23⁻3.49 and 4.38⁻4.70 for 10, 25 and 75 mg/kg doses, respectively. The tissue distribution showed that DPTM was diffused into all the tested tissues, especially into the intestine and lung. Excretion via urine and feces studies demonstrated that DPTM was mainly excreted by feces after administration.
Keywords: DPTM; HPLC-MS/MS; distribution; excretion; pharmacokinetics.