Duckweeds are small, free-floating, largely asexual and highly neotenous organisms. They display the most rapid growth among flowering plants and are of growing interest in aquaculture and genome biology. Genomic and chromosomal data are still rare. Applying flow-cytometric genome size measurement, microscopic determination of frond, cell and nucleus morphology, as well as fluorescence in situ hybridization (FISH) for localization of ribosomal DNA (rDNA), we compared eleven species, representative for the five duckweed genera to search for potential correlations between genome size, cell and nuclei volume, simplified body architecture (neoteny), chromosome numbers and rDNA loci. We found a ~14-fold genome size variation (from 160 to 2203 Mbp), considerable differences in frond size and shape, highly variable guard cell and nucleus size, chromosome number (from 2n = 36 to 82) and number of 5S and 45S rDNA loci. In general, genome size is positively correlated with guard cell and nucleus volume (p < 0.001) and with the neoteny level and inversely with the frond size. In individual cases these correlations could be blurred for instance by particular body and cell structures which seem to be linked to specific floating styles. Chromosome number and rDNA loci variation between the tested species was independent of the genome size. We could not confirm previously reported intraspecific variation of chromosome numbers between individual clones of the genera Spirodela and Landoltia.