Background: Previous metabolomic studies have revealed that plasma metabolic signatures may predict epithelial ovarian cancer (EOC) recurrence. However, few studies have performed metabolic profiling of pre- and post-operative specimens to investigate EOC prognostic biomarkers.
Objective: The aims of our study were to compare the predictive performance of pre- and post-operative specimens and to create a better model for recurrence by combining biomarkers from both metabolic signatures.
Methods: Thirty-five paired plasma samples were collected from 35 EOC patients before and after surgery. The patients were followed-up until December, 2016 to obtain recurrence information. Metabolomics using rapid resolution liquid chromatography-mass spectrometry was performed to identify metabolic signatures related to EOC recurrence. The support vector machine model was employed to predict EOC recurrence using identified biomarkers.
Results: Global metabolomic profiles distinguished recurrent from non-recurrent EOC using both pre- and post-operative plasma. Ten common significant biomarkers, hydroxyphenyllactic acid, uric acid, creatinine, lysine, 3-(3,5-diiodo-4-hydroxyphenyl) lactate, phosphohydroxypyruvic acid, carnitine, coproporphyrinogen, L-beta-aspartyl-L-glutamic acid and 24,25-hydroxyvitamin D3, were identified as predictive biomarkers for EOC recurrence. The area under the receiver operating characteristic (AUC) values in pre- and post-operative plasma were 0.815 and 0.909, respectively; the AUC value after combining the two sets reached 0.964.
Conclusion: Plasma metabolomic analysis could be used to predict EOC recurrence. While post-operative biomarkers have a predictive advantage over pre-operative biomarkers, combining pre- and post-operative biomarkers showed the best predictive performance and has great potential for predicting recurrent EOC.
Keywords: Biomarkers; Epithelial ovarian cancer (EOC); Metabolomics; Recurrence.