Inflammatory breast cancer (IBC) is a highly metastatic, lethal form of breast cancer that lacks targeted therapeutic strategies. Inspired by the promising cytotoxicity of gambogic acid and related caged xanthones in spheroidsMARY-X, an in vitro preclinical IBC model, we constructed a library of synthetic analogs and performed structure-activity relationship studies. The studies revealed that functionalizing the A-ring of the caged xanthone framework can significantly affect potency. Specifically, introduction of hydroxyl or fluorine groups at discrete positions of the A-ring leads to enhanced cytotoxicity at submicromolar concentrations. These compounds induce complete dissolution of spheroidsMARY-X with subsequent apoptosis of both the peripherally- and centrally-located cells, proliferative and quiescent-prone (e.g. hypoxic), respectively. These results highlight the structural flexibility and pharmacological potential of the caged xanthone motif for the design of IBC-targeting therapeutics.
Keywords: Apoptosis; Breast cancer; Natural product; Spheroids; Synthetic methods.
Copyright © 2019 Elsevier Masson SAS. All rights reserved.