A series of novel N-hydroxypropenamides containing adamantane moiety were identified and most of them exhibited HDAC inhibitory activity and could reverse the resistance of cisplatin in NSCLC cell lines. In this process, molecular docking was employed to verify the rationality of designing, subsequently, target compounds were synthesized and conducted to enzyme- and cell-based biological evaluation. Most of synthesized compounds could inhibit HDAC activity with the IC50 values lower than 50 nM and result in the increase of Ac-H4 and p21 in A549 cells. Importantly, we assessed the reversal effect of those compounds and found several compounds display an anti-resistant effect in lung cancer cells, especially compound 8f. As compared to belinostat and cisplatin, compound 8f showed improved inhibitory activity against A549/CDDP cell lines with IC50 value of 5.76 μM, and far lower resistance index of 1.24. Moreover, the structure-activity relationships of these compounds were summarized and compound 8f could serve as a research tool for identifying the mechanism of reversing resistance and a template for designing novel compounds to reverse cisplatin resistance.
Keywords: Cisplatin resistance; HDAC; Lung cancer; Molecular docking; N-hydroxypropenamide.
Copyright © 2019 Elsevier Inc. All rights reserved.