Accurate detection and recognition of chemical signals play extremely important roles for insects in their survival and reproduction. Chemosensory receptors, including odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs), are involved in detection of volatile signals. In the present study, we aimed to identify candidate chemosensory receptors, and RNA-seq technology was employed to sequence the antennal transcriptome of Protaetia brevitarsis (Coleoptera: Scarabaeidae: Cetoniinae), a native agricultural and horticultural pest in East-Asia. According to the sequence similarity analysis, we identified 72 PbreORs, 11 PbreGRs and eight PbreIRs. Among PbreORs, PbreOR2, PbreOR33 and PbreOR53 were preliminarily classified into pheromone receptors. Further qRT-PCR analysis indicated that 11 PbreORs were specifically expressed in the antennae of male P. brevitarsis, whereas 23 PbreORs were specifically expressed in the female antennae. Our results laid a solid foundation for further functional elucidations of insect chemoreceptors, which could be used as the potential targets of pest management.