Antimicrobial resistance to traditional antibiotics leads to a serious concern for medical care owing to ineffective antibiotic therapies. This study focused on the preparation of silver nanocomposites (AgNPs@Tob&PAGA) by modifying AgNPs with tobramycin (Tob) and carbohydrate polymer of poly(2-(acrylamido) glucopyranose) (PAGA). The enhanced antibacterial activities of nanocomposites against common pathogens of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were explored. The introduction of PAGA onto silver nanocomposites improved both citocompatibility and antibacterial activity. Compared with nude Tob, AgNPs@Tob&PAGA showed more fascinating antimicrobial effect against E. coli and S. aureus with about 20-fold increase in the antibacterial activity, simultaneously no detectable resistance was observed. Consequently, the silver nanocomposite as an antimicrobial agent presents promising prospects in the treatment of bacterial infections caused by antimicrobial resistant bacteria.