Chronic stress has been observed to increase the risk of developing depression and induce neuronal alterations of synaptic plasticity, yet the underlying molecular mechanisms remain unclear. Here, we found that the ubiquitously expressed RNA-binding protein HuR was up-regulated in the medial prefrontal cortex (mPFC) of mice following chronic stress. In adult mice, AAV-Cre-mediated knockout of HuR in the mPFC prevented anxiety-like and depression-like behaviors induced by chronic stress. HuR was also required for the stress-induced dendritic spine loss and synaptic transmission deficits. Moreover, HuRflox/flox;Nex-Cre mice, which induce HuR loss of function from embryonic development, exhibited enhanced synaptic functions. Notably, we ascertained RhoA signaling to be regulated by HuR and involved in the modulation of structural synaptic plasticity in response to chronic stress. Our results demonstrate HuR is a critical modulator for the regulation of stress-induced synaptic plasticity alterations and depression, providing a potential therapeutic target for the treatment of depressive disorders.
Keywords: HuR (ELAVL1); RhoA; chronic restraint stress; major depressive disorder; resilience; synaptic plasticity.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].