Purpose: A recent study has reported that schizophrenia patients show an uncoupled association between intraventricular brain temperature (BT) and cerebral blood flow (CBF). CBF has been found to be closely coupled with spontaneous brain activities (SBAs) derived from resting-state BOLD fMRI metrics. Yet, it is unclear so far whether the relationship between the intraventricular BT and the SBAs may change in patients with adolescent-onset schizophrenia (AOS) compared with that in healthy controls (HCs).
Methods: The present study recruited 28 first-episode, drug-naïve AOS patients and 22 matched HCs. We measured the temperature of the lateral ventricles (LV) using diffusion-weighted imaging thermometry and measured SBAs using both regional homogeneity and amplitude of low-frequency fluctuation methods. A nonparametric Wilcoxon rank sum test was used to detect the difference in intraventricular BT between AOS patients and HCs with LV volume, age, and sex as covariates. We also evaluated the relationship between the intraventricular BT and the SBAs using partial correlation analysis controlling for LV volume, age, and sex.
Results: We found that HCs showed a significant negative correlation between the intraventricular BT and the local SBAs in the bilateral putamina and left superior temporal gyrus, while such a correlation was absent in AOS patients. Additionally, no significant difference between the two groups was found in the intraventricular BT.
Conclusion: These findings suggest that AOS patients may experience an uncoupling between intraventricular BT and SBAs in several schizophrenia-related brain areas, which may be associated with the altered relationships among intraventricular BT, CBF, and metabolism.
Keywords: Adolescent-onset schizophrenia; Diffusion-weighted imaging thermometry; Intraventricular brain temperature; Resting-state fMRI; Spontaneous brain activities.