The purpose of this study was to assess drug susceptibility of clinical B. fragilis strains and to determine any correlation between drug resistance and the presence of specific genes. Antimicrobial susceptibility was assessed using E-tests. All isolates were analyzed with the PCR technique for the presence of antibiotic resistance genes (cepA, cfxA, cfiA, ermF, ermB, ermG, nim), insertion sequences elements (IS1186, IS1187, IS1188, IS942), and enterotoxin-encoding genes (bft). Susceptibility tests yielded the following rates of resistance to the evaluated antibiotics: penicillin G (100%), clindamycin (22.5%), cefoxitin (6.3%), amoxicillin/clavulanic acid (1.8%). All strain were susceptible to imipenem, and metronidazole. The following antibiotic resistance genes were detected in the evaluated isolates: cepA (in 96.4% of isolates), cfxA (in 12.6%), cfiA (in 1.8%), and ermF (in 25.2%). Genes ermB, ermG, and nim were not found. The presence of the cepA gene showed no correlation with the penicillin G MIC. However, we observed a high correlation between cefoxitin MIC values and the presence of gene cfxA as well as a nearly complete correlation between clindamycin MIC values and the presence of gene ermF. The presence of a bft gene was detected in 14.4% of the analyzed B. fragilis isolates; with the bft-1 allele found in 75%, bft-2 in 25%, and bft-3 in none of the isolates. Antibiotic susceptibility profiles of enterotoxin gene-positive isolates in our study did not differ from those of enterotoxin gene-negative isolates.
Keywords: Antibiotic resistance; Bacteroides fragilis; Clindamycin; MALDI-TOF MS; Resistance genes; bft.
Copyright © 2019 Elsevier Ltd. All rights reserved.