Visible light-activated degradation of natural organic matter (NOM) using zinc-bismuth oxides-graphitic carbon nitride (ZBO-CN) photocatalyst: Mechanistic insights from EEM-PARAFAC

Chemosphere. 2019 Jun:224:597-606. doi: 10.1016/j.chemosphere.2019.02.171. Epub 2019 Feb 27.

Abstract

In this study, the complex degradation behavior of natural organic matter (NOM) was explored using photocatalytic oxidation systems with a novel catalyst based on a hybrid composite of zinc-bismuth oxides and g-C3N4 (ZBO-CN). The photooxidation system demonstrated the effective removal of NOM under low-intensity visible light irradiation, presenting removal rates of 53-74% and 65-88% on the basis of dissolved organic carbon (DOC) and the UV absorption coefficient (UV254), respectively, at 1.5 g/L of the catalyst. The NOM removal showed an increasing trend with a higher ZBO-CN dose. Comparative experiments with the hole and OH radical scavengers revealed that the direct oxidation occurring on the catalyst's surface might be the governing photocatalytic mechanism. Fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC) revealed the individual removal behavior of the different constituents in bulk NOM. Different tendencies towards preferential adsorption and subsequent oxidative removal were found among dissimilar fluorescent components within a bulk terrestrial NOM, following the order of terrestrial humic-like (C1) > humic-like (C2) > microbial humic-like (C3) components. The result suggests the dominant operation of π-π and/or hydrophobic interactions between the NOM and the catalyst. The discriminative removal behavior was more pronounced in visible light versus UV-activated systems, probably due to the incapability of visible light to excite è - h+ pairs of ZnO and the triplet state of NOM. The high photoactivity and structural stability of ZBO-CN under visible light implies its potential for an effective, low-cost and energy-saving treatment technology to selectively remove large sized humic-like substances from water.

Keywords: EEM-PARAFAC; Graphitic carbon nitride; NOM; Photocatalytic degradation; Visible light.

MeSH terms

  • Bismuth / chemistry*
  • Factor Analysis, Statistical
  • Fluorescence
  • Graphite / chemistry*
  • Humic Substances / analysis
  • Light
  • Nitriles / chemistry*
  • Organic Chemicals / chemistry
  • Organic Chemicals / metabolism*
  • Organic Chemicals / radiation effects
  • Photolysis*
  • Spectrometry, Fluorescence / methods*
  • Water Pollutants, Chemical / chemistry
  • Water Pollutants, Chemical / metabolism*
  • Water Pollutants, Chemical / radiation effects
  • Zinc Oxide / chemistry*

Substances

  • Humic Substances
  • Nitriles
  • Organic Chemicals
  • Water Pollutants, Chemical
  • cyanogen
  • Graphite
  • bismuth oxide
  • Zinc Oxide
  • Bismuth