Background: Smartphones are increasingly available and some high quality apps are available for smoking cessation. However, the cost-effectiveness of promoting such apps has never been studied. We therefore aimed to estimate the health gain, inequality impacts and cost-utility from a five-year promotion campaign of a smoking cessation smartphone app compared to business-as-usual (no app use for quitting).
Methods: A well-established Markov macro-simulation model utilising a multi-state life-table was adapted to the intervention (lifetime horizon, 3% discount rate). The setting was the New Zealand (NZ) population (N = 4.4 million). The intervention effect size was from a multi-country randomised trial: relative risk for quitting at 6 months = 2.23 (95%CI: 1.08 to 4.77), albeit subsequently adjusted to consider long-term relapse. Intervention costs were based on NZ mass media promotion data and the NZ cost of attracting a smoker to smoking cessation services (NZ$64 per person).
Results: The five-year intervention was estimated to generate 6760 QALYs (95%UI: 5420 to 8420) over the remaining lifetime of the population. For Māori (Indigenous population) there was 2.8 times the per capita age-standardised QALY gain relative to non-Māori. The intervention was also estimated to be cost-saving to the health system (saving NZ$115 million [m], 95%UI: 72.5m to 171m; US$81.8m). The cost-saving aspect of the intervention was maintained in scenario and sensitivity analyses where the discount rate was doubled to 6%, the effect size halved, and the intervention run for just 1 year.
Conclusions: This study provides modelling-level evidence that mass-media promotion of a smartphone app for smoking cessation could generate health gain, reduce ethnic inequalities in health and save health system costs. Nevertheless, there are other tobacco control measures which generate considerably larger health gains and cost-savings such as raising tobacco taxes.
Keywords: Cost-utility analysis; Mass media; Smartphone apps; Smoking cessation; Tobacco control; mHealth.