The standard membrane-feeding assay (SMFA) is a functional assay that has been used to inform the development of transmission-blocking vaccines (TBV) against Plasmodium falciparum malaria. For Pfs230, a lead target antigen for TBV development, a few studies have tested either a single anti-Pfs230 polyclonal or monoclonal antibody (one antibody per study) at serial dilutions and showed a dose-dependent response. Further, there have been reports that the SMFA activity of anti-Pfs230 polyclonal and monoclonal antibodies were enhanced in the presence of complement. However, no analysis has been performed with multiple samples, and the impact of anti-Pfs230 antibody titers, IgG subclass profile and avidity were evaluated together in relation to transmission-reducing activity (TRA) by SMFA. In this report, a total of 39 unique anti-Pfs230 IgGs from five different mouse immunization studies were assessed for their ELISA units (EU), IgG2/IgG1 ratio and avidity by ELISA, and the functionality (% transmission-reducing activity, %TRA) by SMFA. The mice were immunized with Pfs230 alone, Pfs230 conjugated to CRM197, or a mixture of unconjugated Pfs230 and CRM197 proteins using Alhydrogel or Montanide ISA720 adjuvants. In all studies, the Pfs230 antigen was from the same source. There was a significant correlation between EU and %TRA (p < 0.0001 by a Spearman rank test) for the anti-Pfs230 IgGs. Notably, multiple linear regression analyses showed that both IgG2/IgG1 ratio and avidity significantly affected %TRA (p = 0.003 to p = 0.014, depending on the models) after adjusting for EU. The results suggest that in addition to antibody titers, IgG2/IgG1 ratio and avidity should each be evaluated to predict the biological activity of anti-Pfs230 antibodies for future vaccine development.
Keywords: Avidity; IgG subclass; Pfs230; Plasmodium falciparum; Standard membrane-feeding assay; Transmission-blocking vaccine.
Copyright © 2019. Published by Elsevier Ltd.