The design and use of existing VIGS vectors for revealing monocot gene functions are described and potential new vectors are discussed, which may expand their repertoire. Virus induced gene silencing (VIGS) is a method of transient gene silencing in plants, triggered by the use of modified viral vectors. VIGS has found widespread use in deciphering the functions of plant genes, mainly for dicots. In the last decade, however, its use in monocots has increased noticeably, involving not only previously described viruses for monocots, but also those described for dicots. Additional viruses have been modified for VIGS to bring a larger collection of monocots under the ambit of this method. For monocots, new methods of inoculation have been tried to obtain increased silencing efficiency. The issue of insert stability and duration of silencing have also been addressed by various research groups. VIGS has been used to unravel the functions of a fairly large collection of monocot genes. This review summarizes the above developments, bringing out some of the gaps in our understanding and identifies directions to develop this technology further in the coming years.
Keywords: Functional genomics; Monocots; RNAi; Virus; Virus induced gene silencing.