Background: Human bladder cancer is one of the common malignant tumors, and it mainly occurs in men. miR-182-5p, a member of miR-183 family, acts as tumor suppressor or oncogene in various kinds of tumors. In this study, we first investigate that the absence of miR-182-5p in human bladder cancer promotes tumor growth by regulating the expression of Cofilin 1, an actin modulating-protein.
Methods: Human bladder tumor tissue specimens were collected to detect the expression of miR-182-5p and Cofilin 1 by qRT-PCR. Luciferase activity assay was performed to demonstrate the regulation of Cofilin 1 mRNA 3'UTR by miR-182-5p. Then, cell experiments were performed to analysis the effect of miR-182-5p/Cofilin 1 pathway on tumor cell proliferation, migration, invasion and colony forming efficiency. Finally, xenograft tumor models were established to evaluate the role of miR-182-5p in tumorigenesis abilities in vivo.
Results: qRT-PCR and Western blotting analysis showed that Cofilin 1 expression was up-regulated in both bladder cancer tissues and cell lines compared with normal. Luciferase activity assay showed that miR-182-5p specifically targets Cofilin 1 mRNA 3'UTR and represses the expression of Cofilin 1. Also, miR-182-5p inhibited bladder tumor cell proliferation, migration, invasion and colony forming efficiency. Furthermore, xenograft tumor model assay showed that miR-182-5p plays a negative role in bladder cancer tumorigenesis abilities in vivo.
Conclusion: Present results suggest that miR-182-5p could inhibit human bladder tumor growth by repressing Cofilin 1 expression. Our findings may provide a new horizon for exploring therapeutic target of bladder cancer.
Keywords: Bladder cancer; Cofilin 1; Invasion; Migration; Proliferation; miR-182-5p.