Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear

J Digit Imaging. 2019 Dec;32(6):980-986. doi: 10.1007/s10278-019-00193-4.

Abstract

Deep learning for MRI detection of sports injuries poses unique challenges. To address these difficulties, this study examines the feasibility and incremental benefit of several customized network architectures in evaluation of complete anterior cruciate ligament (ACL) tears. Two hundred sixty patients, ages 18-40, were identified in a retrospective review of knee MRIs obtained from September 2013 to March 2016. Half of the cases demonstrated a complete ACL tear (624 slices), the other half a normal ACL (3520 slices). Two hundred cases were used for training and validation, and the remaining 60 cases as an independent test set. For each exam with an ACL tear, coronal proton density non-fat suppressed sequence was manually annotated to delineate: (1) a bounding-box around the cruciate ligaments; (2) slices containing the tear. Multiple convolutional neural network (CNN) architectures were implemented including variations in input field-of-view and dimensionality. For single-slice CNN architectures, validation accuracy of a dynamic patch-based sampling algorithm (0.765) outperformed both cropped slice (0.720) and full slice (0.680) strategies. Using the dynamic patch-based sampling algorithm as a baseline, a five-slice CNN input (0.915) outperformed both three-slice (0.865) and single-slice (0.765) inputs. The final highest performing five-slice dynamic patch-based sampling algorithm resulted in independent test set AUC, sensitivity, specificity, PPV, and NPV of 0.971, 0.967, 1.00, 0.938, and 1.00. A customized 3D deep learning architecture based on dynamic patch-based sampling demonstrates high performance in detection of complete ACL tears with over 96% test set accuracy. A cropped field-of-view and 3D inputs are critical for high algorithm performance.

Keywords: Anterior cruciate ligament; Artificial intelligence; Deep learning; Machine learning; Magnetic resonance imaging.

MeSH terms

  • Adolescent
  • Adult
  • Anterior Cruciate Ligament / diagnostic imaging
  • Anterior Cruciate Ligament Injuries / diagnostic imaging*
  • Athletic Injuries / diagnostic imaging
  • Deep Learning*
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Knee Joint / diagnostic imaging
  • Magnetic Resonance Imaging / methods*
  • Male
  • Reproducibility of Results
  • Retrospective Studies
  • Sensitivity and Specificity
  • Young Adult