Preferential quenching of 5d antiferromagnetic order in Sr3(Ir1-x Mn x )2O7

J Phys Condens Matter. 2019 Jun 19;31(24):244003. doi: 10.1088/1361-648X/ab0ef9. Epub 2019 Mar 12.

Abstract

The breakdown of [Formula: see text] antiferromagnetism in the limit of strong disorder is studied in Sr3(Ir1-x Mn x )2O7. Upon Mn-substitution, antiferromagnetic ordering of the Ir cations becomes increasingly two-dimensional, resulting in the complete suppression of long-range Ir magnetic order above [Formula: see text]. Long-range antiferromagnetism however persists on the Mn sites to higher Mn concentrations (x > 0.25) and is necessarily mediated via a random network of majority Ir sites. Our data suggest a shift in the Mn valence from Mn4+ to Mn3+ at intermediate doping levels, which in turn generates nonmagnetic Ir5+ sites and suppresses long-range order within the Ir network. The collapse of long-range [Formula: see text] antiferromagnetism and the survival of percolating antiferromagnetic order on Mn-sites demonstrates a complex 3d-5d exchange process that surprisingly enables minority Mn spins to order far below the conventional percolation threshold for a bilayer square lattice.