Integrating germline and somatic variation information using genomic data for the discovery of biomarkers in prostate cancer

BMC Cancer. 2019 Mar 14;19(1):229. doi: 10.1186/s12885-019-5440-8.

Abstract

Background: Prostate cancer (PCa) is the most common diagnosed malignancy and the second leading cause of cancer-related deaths among men in the United States. High-throughput genotyping has enabled discovery of germline genetic susceptibility variants (herein referred to as germline mutations) associated with an increased risk of developing PCa. However, germline mutation information has not been leveraged and integrated with information on acquired somatic mutations to link genetic susceptibility to tumorigenesis. The objective of this exploratory study was to address this knowledge gap.

Methods: Germline mutations and associated gene information were derived from genome-wide association studies (GWAS) reports. Somatic mutation and gene expression data were derived from 495 tumors and 52 normal control samples obtained from The Cancer Genome Atlas (TCGA). We integrated germline and somatic mutation information using gene expression data. We performed enrichment analysis to discover molecular networks and biological pathways enriched for germline and somatic mutations.

Results: We discovered a signature of 124 genes containing both germline and somatic mutations. Enrichment analysis revealed molecular networks and biological pathways enriched for germline and somatic mutations, including, the PDGF, P53, MYC, IGF-1, PTEN and Androgen receptor signaling pathways.

Conclusion: Integrative genomic analysis links genetic susceptibility to tumorigenesis in PCa and establishes putative functional bridges between the germline and somatic variation, and the biological pathways they control.

Keywords: Germline somatic mutations genomic analysis prostate Cancer.

MeSH terms

  • Biomarkers, Tumor / genetics*
  • Gene Expression
  • Gene Expression Regulation, Neoplastic
  • Gene Regulatory Networks*
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study
  • Genomics / methods*
  • Germ-Line Mutation
  • Humans
  • Insulin-Like Growth Factor I / genetics
  • Male
  • Mutation*
  • PTEN Phosphohydrolase / genetics
  • Prostatic Neoplasms / genetics*
  • Proto-Oncogene Proteins c-myc / genetics
  • Receptors, Androgen / genetics
  • Tumor Suppressor Protein p53 / genetics

Substances

  • AR protein, human
  • Biomarkers, Tumor
  • IGF1 protein, human
  • MYC protein, human
  • Proto-Oncogene Proteins c-myc
  • Receptors, Androgen
  • TP53 protein, human
  • Tumor Suppressor Protein p53
  • Insulin-Like Growth Factor I
  • PTEN Phosphohydrolase
  • PTEN protein, human