Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives

Food Res Int. 2019 May:119:99-109. doi: 10.1016/j.foodres.2019.01.045. Epub 2019 Jan 21.

Abstract

Histamine is known to be a principal causative agent associated with marine food poisoning outbreaks worldwide, which is typically formed in the contaminated food by decarboxylation of histidine by bacterial histidine decarboxylase. Upon quantification of histamine in different food products, one can comment on the quality of the food and use it as an indicator of the good manufacturing practices and the state of preservation. The United States Food and Drug Administration (FDA) has established 50 ppm (50 mg/kg) of histamine as the chemical index for fish spoilage. Consumption of foods containing histamine higher than the permissible limit can cause serious health issues. Several methods have been developed for the determination of histamine in a variety of food products. The conventional methods for histamine detection such as thin layer chromatography, capillary zone electrophoresis, gas chromatography, colorimetry, fluorimetry, ion mobility spectrometry, high-performance liquid chromatography, and enzyme-linked immunosorbent assay (ELISA), are being used for sensitive and selective detection of histamine. However, there are a number of disadvantages associated with the conventional techniques, such as multi-step sample processing and requirement of expensive sophisticated instruments, which restrict their applications at laboratory level only. In order to address the limitations associated with the traditional methods, new approaches have been developed by various research groups. Current advances in nanomaterial-based sensing of histamine in different food products have shown significant measurement accuracy due to their high sensitivity, specificity, field deployability, cost and ease of operation. In this review, we have discussed the development of nanomaterials-based histamine sensing assays/strategies where the detection is based on optical (fluorescence, surface enhanced Raman spectroscopy (SERS), localized surface plasmon resonance) and electrochemical (impedimetric, voltammetry, potentiometric, etc.). Further, the advantages, disadvantages and future scope of the nanomaterials-based histamine sensor research are highlighted.

Keywords: Electrochemical sensors; Food quality control; Histamine; Nanoparticles; Nanosensor; Optical sensors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Chromatography, High Pressure Liquid
  • Chromatography, Thin Layer
  • Colorimetry
  • Electrochemical Techniques / methods*
  • Fish Products / analysis
  • Fish Products / poisoning
  • Fishes
  • Fluorometry
  • Food Analysis / methods*
  • Food Contamination / analysis*
  • Food Contamination / prevention & control
  • Foodborne Diseases / microbiology
  • Histamine / analysis*
  • Nanostructures / chemistry*
  • Nanotechnology / methods*
  • Sensitivity and Specificity
  • Surface Plasmon Resonance
  • United States
  • United States Food and Drug Administration

Substances

  • Histamine