The plant triterpenoid celastrol blocks PINK1-dependent mitophagy by disrupting PINK1's association with the mitochondrial protein TOM20

J Biol Chem. 2019 May 3;294(18):7472-7487. doi: 10.1074/jbc.RA118.006506. Epub 2019 Mar 18.

Abstract

A critical function of the PTEN-induced kinase 1 (PINK1)-Parkin pathway is to mediate the clearing of unhealthy or damaged mitochondria via mitophagy. Loss of either PINK1 or Parkin protein expression is associated with Parkinson's disease. Here, using a high-throughput screening approach along with recombinant protein expression and kinase, immunoblotting, and immunofluorescence live-cell imaging assays, we report that celastrol, a pentacyclic triterpenoid isolated from extracts of the medicinal plant Tripterygium wilfordii, blocks recruitment pof Parkin to mitochondria, preventing mitophagy in response to mitochondrial depolarization induced by carbonyl cyanide m-chlorophenylhydrazone or to gamitrinib-induced inhibition of mitochondrial heat shock protein 90 (HSP90). Celastrol's effect on mitophagy was independent of its known role in microtubule disruption. Instead, we show that celastrol suppresses Parkin recruitment by inactivating PINK1 and preventing it from phosphorylating Parkin and also ubiquitin. We also observed that PINK1 directly and strongly associates with TOM20, a component of the translocase of outer mitochondrial membrane (TOM) machinery and relatively weak binding to another TOM subunit, TOM70. Moreover, celastrol disrupted binding between PINK1 and TOM20 both in vitro and in vivo but did not affect binding between TOM20 and TOM70. Using native gel analysis, we also show that celastrol disrupts PINK1 complex formation upon mitochondrial depolarization and sequesters PINK1 to high-molecular-weight protein aggregates. These results reveal that celastrol regulates the mitochondrial quality control pathway by interfering with PINK1-TOM20 binding.

Keywords: PTEN-induced putative kinase 1 (PINK1); TOM20; TOM70; celastrol; chemical biology; gamitrinib; mitochondria; mitophagy; parkin; plant terpenoid.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • HSP90 Heat-Shock Proteins / antagonists & inhibitors
  • HeLa Cells
  • Humans
  • Hydrazones / antagonists & inhibitors
  • Hydrazones / pharmacology
  • Membrane Potential, Mitochondrial / drug effects
  • Membrane Transport Proteins / metabolism*
  • Microtubules / metabolism
  • Mitochondrial Precursor Protein Import Complex Proteins
  • Mitophagy / drug effects*
  • Pentacyclic Triterpenes
  • Polymerization
  • Protein Binding
  • Protein Kinases / metabolism*
  • Receptors, Cell Surface / metabolism*
  • Tripterygium / chemistry*
  • Triterpenes / pharmacology*
  • Ubiquitin-Protein Ligases / metabolism

Substances

  • HSP90 Heat-Shock Proteins
  • Hydrazones
  • Membrane Transport Proteins
  • Mitochondrial Precursor Protein Import Complex Proteins
  • Pentacyclic Triterpenes
  • Receptors, Cell Surface
  • TOMM20 protein, human
  • Triterpenes
  • carbonyl 3-chlorophenylhydrazone
  • Ubiquitin-Protein Ligases
  • parkin protein
  • Protein Kinases
  • PTEN-induced putative kinase
  • celastrol