Using induced pluripotent stem cell neuronal models to study neurodegenerative diseases

Biochim Biophys Acta Mol Basis Dis. 2020 Apr 1;1866(4):165431. doi: 10.1016/j.bbadis.2019.03.004. Epub 2019 Mar 18.

Abstract

Current application of human induced pluripotent stem cells (hiPSCs) technology in patient-specific models of neurodegenerative disorders recapitulate some of key phenotypes of diseases, representing disease-specific cellular modeling and providing a unique platform for therapeutics development. We review recent efforts toward advancing hiPSCs-derived neuronal cell types and highlight their potential use for the development of more complex in vitro models of neurodegenerative diseases by focusing on Alzheimer's disease, Parkinson's disease, Huntington's disease and Amyotrophic lateral sclerosis. We present evidence from previous works on the important phenotypic changes of various neuronal types in these neurological diseases. We also summarize efforts on conducting low- and high-throughput screening experiments with hiPSCs toward developing potential therapeutics for treatment of neurodegenerative diseases. Lastly, we discuss the limitations of hiPSCs culture system in studying neurodegenerative diseases and alternative strategies to overcome these hurdles.

Keywords: Disease modeling; Induced pluripotent stem cells; Neurodegeneration; Neurodegenerative disease; Neurons; Therapeutic development.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Induced Pluripotent Stem Cells / metabolism*
  • Induced Pluripotent Stem Cells / pathology
  • Models, Neurological*
  • Neurodegenerative Diseases / metabolism*
  • Neurodegenerative Diseases / pathology