Large-scale distribution of tuna species in a warming ocean

Glob Chang Biol. 2019 Jun;25(6):2043-2060. doi: 10.1111/gcb.14630. Epub 2019 Apr 19.

Abstract

Tuna are globally distributed species of major commercial importance and some tuna species are a major source of protein in many countries. Tuna are characterized by dynamic distribution patterns that respond to climate variability and long-term change. Here, we investigated the effect of environmental conditions on the worldwide distribution and relative abundance of six tuna species between 1958 and 2004 and estimated the expected end-of-the-century changes based on a high-greenhouse gas concentration scenario (RCP8.5). We created species distribution models using a long-term Japanese longline fishery dataset and two-step generalized additive models. Over the historical period, suitable habitats shifted poleward for 20 out of 22 tuna stocks, based on their gravity centre (GC) and/or one of their distribution limits. On average, tuna habitat distribution limits have shifted poleward 6.5 km per decade in the northern hemisphere and 5.5 km per decade in the southern hemisphere. Larger tuna distribution shifts and changes in abundance are expected in the future, especially by the end-of-the-century (2080-2099). Temperate tunas (albacore, Atlantic bluefin, and southern bluefin) and the tropical bigeye tuna are expected to decline in the tropics and shift poleward. In contrast, skipjack and yellowfin tunas are projected to become more abundant in tropical areas as well as in most coastal countries' exclusive economic zones (EEZ). These results provide global information on the potential effects of climate change in tuna populations and can assist countries seeking to minimize these effects via adaptive management.

Keywords: climate change; exclusive economic zone; future projections; poleward shift; species distribution model; tuna.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Atlantic Ocean
  • Climate Change*
  • Ecosystem
  • Population Dynamics
  • Tuna*