"Radiation Damping" in gas spin comagnetometers

J Magn Reson. 2019 May:302:14-20. doi: 10.1016/j.jmr.2019.03.004. Epub 2019 Mar 15.

Abstract

We report a new kind of interaction between overlapping Rb-Xe spin ensembles polarized by spin-exchange optical pumping. The Rb acts as both a medium to optically polarize the Xe spins and as a magnetometer to probe the precession of Xe spins. When Xe spins precess, they result in the precession of Rb spins. Like the radiation damping effect caused by the coil in conventional NMR systems, the precessing Rb spins lead to damping and a frequency-shift for the precessing Xe spins. When Xe spins are operated in a free-induction decay mode, the transverse relaxation time and oscillating frequency of Xe spins change due to the "radiation damping" effect of Rb spins. When Xe spins are operated in the self-oscillating mode, its transverse relaxation time and oscillating frequency will also be changed. These effects will influence the accuracy of NMR probes, which are widely used in the search for CPT- and Lorentz-invariance violations, the fifth force, etc. If this problem is solved or compensated for, the limit of the aforementioned search may be improved.

Keywords: Radiation damping; Spin comagnetometer; Spin-exchange optical pumping.