Background: Peptide-based therapeutics offer a unique avenue for the development of novel agents for the treatment of diabetes mellitus including α-glucosidase inhibitors. The peptide, SQSPA, was reported to possess to α -glucosidase inhibitory activity in addition to resistance to Gastrointestinal Tract (GIT) digestion.
Methods: In this study, the in silico and in vitro structure-activity analyses of the peptide was conducted using alanine scanning to identify key amino acid residues.
Results: The alanine scanning led to four analogs viz; AQSPA, SASPA, SQAPA and SQSAA which were GIT stable. Initially, the peptides were subjected to molecular docking on human α- glucosidase and α -amylase where the binding affinities to the enzymes were in the order; AQSPA>SASPA>SQSPA>SQAPA> SQSAA and AQSPA>SQSAA>SASPA>SQSPA> SQAPA, respectively. Hydrogen bond were important for the binding of all peptides but SASPA and AQSPA had the highest hydrogen bonds interactions with the α-glucosidase and α-amylase, respectively. In vitro analysis revealed that the α -glucosidase and α-amylase inhibitory activities of the peptides were in the order AQSPA>SQSPA>SQAPA>SASPA>SQSAA and AQSPA>SASPA> SQAPA>SQSPA>SQSAA, respectively. Using inhibition kinetics, SQSPA was a mixed inhibitor of α-glucosidase while AQSPA, SQAPA and SQSAA showed non-competitive inhibition. For α- amylase inhibition, SQSPA was a non-competitive inhibitor while AQSPA and SQSAA were mixed inhibitors; SASPA and SQAPA showed uncompetitive inhibition.
Conclusion: The results indicated that P4 and Q2 are important requirements for the α-glucosidase and α-amylase inhibitory activities of the parent peptide, SQSPA. Furthermore, alanine scanning has led to the design of a novel α-glucosidase inhibitory peptide, AQSPA, with increased activities.
Keywords: Alanine scanning; amino acid residues; diabetes mellitus; disaccharidase; peptide-based therapeutics; structure-activity relationship..
Copyright© Bentham Science Publishers; For any queries, please email at [email protected].