Tailoring combinatorial therapies along with real-time monitoring strategies has been the major focus of overcoming multidrug resistance in cancer. However, attempting to develop a multifunctional nanoplatform in a single construct leads to compromising therapeutic outcomes. Herein, we developed a simple, theranostic nanoassembly containing a hyaluronic acid-stabilized redox-sensitive (HART) polyethylenimine polyplex composed of a doxorubicin (DOX) intercalated Bcl-2 shRNA encoded plasmid along with a green-synthesized hausmannite (Mn3O4) and hematite (Fe3O4) nanoparticle (GMF). The highly stable HART nanoassembly has enhanced CD44-mediated intracellular uptake along with hyaluronidase (hylase) and redox-responsive drug-gene release. With Bcl-2 gene silencing induced by the successful delivery of HART in multidrug-resistant MCF7 breast cancer cells, the synergistic cytotoxic effect of Bcl-2 silencing and DOX was achieved. In addition, the HART nanoassembly containing GMF exhibited excellent dual MRI contrast (T1/T2) by reducing artifact signals. Overall, the HART nanoassembly with its enhanced theranostic properties has the potential to improve the therapeutic efficacy in future preclinical and clinical trials.
Keywords: MRI contrast; breast cancer; doxorubicin; gene delivery; hyaluronic acid; multidrug resistance; redox.