Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO₂ Photocatalytic Nanocomposites Using the Zebrafish Embryo Model

Nanomaterials (Basel). 2019 Mar 28;9(4):488. doi: 10.3390/nano9040488.

Abstract

Advanced oxidation processes (AOPs) have recently attracted great interest in water pollution management. Using the zebrafish embryo model, we investigated the environmental impacts of two thermally (RGOTi)- and hydrogen (H₂RGOTi)-reduced graphene oxide/TiO₂ semiconductor photocatalysts recently employed in AOPs. For this purpose, acutoxicity, cardiotoxicity, neurobehavioral toxicity, hematopoietic toxicity, and hatching rate were determinate. For the RGOTi, the no observed effect concentration (NOEC, mortality/teratogenicity score <20%) and the median lethal concentration (LC50) were <400 and 748.6 mg/L, respectively. H₂RGOTi showed a NOEC similar to RGOTi. However, no significant mortality was detected at all concentrations used in the acutoxicity assay (up to1000 mg/L), thus indicating a hypothetical LC50 higher than 1000 mg/L. According to the Fish and Wildlife Service Acute Toxicity Rating Scale, RGOTi can be classified as "practically not toxic" and H₂RGOTi as "relatively harmless". However, both nanocomposites should be used with caution at concentration higher than the NOEC (400 mg/L), in particular RGOTi, which significantly (i) caused pericardial and yolk sac edema; (ii) decreased the hatching rate, locomotion, and hematopoietic activities; and (iii) affected the heart rate. Indeed, the aforementioned teratogenic phenotypes were less devastating in H₂RGOTi-treated embryos, suggesting that the hydrogen-reduced graphene oxide/TiO₂ photocatalysts may be more ecofriendly than the thermally-reduced ones.

Keywords: LC50; nanocomposite photocatalysts; reduced graphene oxide/TiO2; toxicity; zebrafish.