Prussian blue (PB) is known to be an effective cesium adsorbent, but the direct application of PB is limited by the difficulty of its recovery from solution. In this study, PB was immobilized on a porous support media, poly(vinyl alcohol) (PVA) sponge, for use as a selective material for cesium adsorption. The commercially available PVA sponge was functionalized by the addition of poly(acrylic acid) (PAA) (i.e., PAA-PVA) to enhance the PB immobilization, which increased both PB loading and binding strength. The AA functionalization changed the major functional groups from hydroxyl to carboxylic, as confirmed by Fourier-transform infrared spectroscopy. PB was further synthesized in the PAA-PVA using layer-by-layer (LBL) assembly, which contributed to more stable PB formation, and reduced detachment of PB during washing. The prepared adsorbent, PAA-L@PVA-PB, was tested for cesium adsorption capability. Cesium adsorption was equilibrated within three hours, and the maximum cesium adsorption capacity was 4.082 mg/g, which was 5.7 times higher than Pure-L@PVA-PB. The observed decrease in solution pH during cesium adsorption inhibited overall cesium uptake, however, this was minimized by buffering. The prepared PAA-L@PVA-PB was used as a column filling material and its potential use as a countermeasure for removing radioactive cesium from a contaminated water stream was demonstrated.
Keywords: Acrylic acid; Cesium adsorbent; Poly vinyl alcohol sponge; Prussian blue; Surface functionalization.
Copyright © 2019 Elsevier Ltd. All rights reserved.