In this study, a series of BUC-21/titanate nanotube (BT-X) composites were facilely fabricated via ball-milling of 2-dimensional (2D) metal-organic framework (MOF) BUC-21 and titanate nanotubes (TNTs). The BT-X composites were characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV-visible diffuse-reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectrometer (XPS) and high resolution transmission electron microscopy (HRTEM). Both the photocatalytic reduction from Cr(VI) to Cr(III) and adsorptive removal of formed Cr(III) of BT-X composites were systematically investigated under different conditions including pH values and co-existing inorganic ions. It was found that BUC-21 (100 mg)/TNTs (100 mg) (BT-1) composites demonstrate remarkable ability of photocatalytic Cr(VI) reduction and adsorptive Cr(III) removal, as well as good reusability and stability. It is believed that the introduction of TNTs could capture the formed Cr(III) from the surface of BUC-21, which provided more active sites exposed to enhance the Cr(VI) reduction.
Keywords: Adsorption; BUC-21; Chromium; Photocatalysis; Titanate nanotubes.
Copyright © 2019 Elsevier Ltd. All rights reserved.