Despite encouraging clinical results with immune checkpoint inhibitors and other types of immunotherapies, the rate of failure is still very high. The development of proper animal models which could be applied to the screening of effective preclinical antitumor drugs targeting human tumor antigens, such as mesothelin (MSLN), is a great need. MSLN is a 40 kDa cell-surface glycoprotein which is highly expressed in a variety of human cancers, and has great value as a target for antibody-based therapies. The present study reports the establishment of an immunocompetent transgenic mouse expressing human MSLN (hMSLN) only in thyroid gland by utilizing an expression vector containing a thyroid peroxidase (TPO) promoter. These mice do not reject genetically modified tumor cells expressing hMSLN on the cell membrane, and tolerate high doses of hMSLN-targeted immunotoxin. Employing this TPO-MSLN mouse model, we find that the combination treatment of LMB-100 and anti-CTLA-4 induces complete tumor regression in 91% of the mice burdened with 66C14-M tumor cells. The combination therapy provides a significant survival benefit compared with both LMB-100 and anti-CTLA-4 monotherapy. In addition, the cured mice reject tumor cells when rechallenged, indicating the development of long-term antitumor immunity. This novel TPO-MSLN mouse model can serve as an important animal tool to better predict tumor responses to any immunomodulatory therapies that target MSLN.