In this study, the influence of stevia addition and sonication processing parameters on the phenolic content and profile as well as the steviol glycosides of strawberry juice-based samples was investigated. For this purpose, three matrices-control samples of strawberry juices without green stevia powder (CS), strawberry juices with green stevia powder (JGSP), and sonicated juices with green stevia powder (SJGSP)-were prepared. For sonication purposes, different conditions regarding probe diameters (7 mm and 22 mm), amplitudes (50%, 75%, and 100%), and time (15 min, 20 min, and 25 min) were tested. The results that were obtained upon the measurement of the total phenolic content, total flavonoids, steviol glycosides, and antioxidant capacity showed significant differences according to the matrices evaluated, obtaining overall higher values in the samples with stevia added. Moreover, when sonication was evaluated, it was found that a higher amplitude (100%), a larger probe diameter (22 mm), and a longer sonication period (25 min) led to higher values. Flavones such as luteolin and apigenin were identified and quantified in JGSP and SJGSP, while they were not found in CS. Besides these phenolic compounds, kaempferol, quercetin, pyrogallic acid, 4-methylcatechol, and 4-methoxybenzoic acid were also identified and quantified. Similarly to the total phenolic compounds, total flavonoids, and total antioxidant capacity, an increased amount of these compounds was found in SJGSP, especially after using the most intense sonication conditions. Therefore, the use of sonication together with stevia added could be a useful tool to preserve strawberry juices, increasing at the same time the sweetness and the antioxidant value of the beverages.
Keywords: antioxidant compounds; green stevia powder; sonication; steviol glycosides; strawberry juice.