A series of novel 2,4-disubstituted quinazolines were synthesized and evaluated for their anti-tumor activity against five human cancer cells (MDA-MB-231, MCF-7, PC-3, HGC-27 and MGC-803) using MTT assay. Among them, compound 9n showed the most potent cytotoxicity against breast cancer cells. Compound 9n also significantly inhibited the colony formation and migration of MDA-MB-231 and MCF-7 cells. Meanwhile, compound 9n induced cell cycle arrest at G1 phase and cell apoptosis, as well as increased accumulation of intracellular ROS. Furthermore, compound 9n exerted anti-tumor effects in vitro via decreasing the expression of anti-apoptotic protein Bcl-2 and increasing the pro-apoptotic protein Bax and p53. Mechanistically, compound 9n markedly decreased p-EGFR and p-PI3K expression, which revealed that compound 9n targeted breast cancer cells via interfering with EGFR-PI3K signaling pathway. Molecular docking suggested that compound 9n could indeed bind into the active pocket of EGFR. All the findings suggest that compound 9n might be a valuable lead compound for anti-tumor agents targeting breast cancer cells.
Keywords: Breast cancer; EGFR-PI3K; Quinazoline.
Copyright © 2019 Elsevier Masson SAS. All rights reserved.