2,4-Disubstituted quinazolines targeting breast cancer cells via EGFR-PI3K

Eur J Med Chem. 2019 Jun 15:172:36-47. doi: 10.1016/j.ejmech.2019.03.030. Epub 2019 Mar 17.

Abstract

A series of novel 2,4-disubstituted quinazolines were synthesized and evaluated for their anti-tumor activity against five human cancer cells (MDA-MB-231, MCF-7, PC-3, HGC-27 and MGC-803) using MTT assay. Among them, compound 9n showed the most potent cytotoxicity against breast cancer cells. Compound 9n also significantly inhibited the colony formation and migration of MDA-MB-231 and MCF-7 cells. Meanwhile, compound 9n induced cell cycle arrest at G1 phase and cell apoptosis, as well as increased accumulation of intracellular ROS. Furthermore, compound 9n exerted anti-tumor effects in vitro via decreasing the expression of anti-apoptotic protein Bcl-2 and increasing the pro-apoptotic protein Bax and p53. Mechanistically, compound 9n markedly decreased p-EGFR and p-PI3K expression, which revealed that compound 9n targeted breast cancer cells via interfering with EGFR-PI3K signaling pathway. Molecular docking suggested that compound 9n could indeed bind into the active pocket of EGFR. All the findings suggest that compound 9n might be a valuable lead compound for anti-tumor agents targeting breast cancer cells.

Keywords: Breast cancer; EGFR-PI3K; Quinazoline.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Cycle Checkpoints / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / deficiency
  • ErbB Receptors / metabolism
  • Female
  • Humans
  • Molecular Docking Simulation
  • Molecular Structure
  • Phosphatidylinositol 3-Kinases / deficiency
  • Phosphatidylinositol 3-Kinases / metabolism*
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Quinazolines / chemical synthesis
  • Quinazolines / chemistry
  • Quinazolines / pharmacology*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Protein Kinase Inhibitors
  • Quinazolines
  • Phosphatidylinositol 3-Kinases
  • EGFR protein, human
  • ErbB Receptors