Stroke remains a significant unmet clinical need with limited therapeutic options. The peculiar feature of ischemic stroke is the interruption in brain circulation, resulting in a cascade of detrimental cerebrovasculature alterations. Treatment strategies designed to maintain potency of the cerebrovasculature may protect against stroke. The present study assessed the effects of short bouts of exercise prior to stroke induction and characterized cerebral blood flow and motor functions in vivo. Adult Sprague-Dawley rats were exposed to a single short bout of exercise (30-min or 60-min forced running wheel) then subjected to transient middle cerebral artery occlusion (MCAO). Non-exercise stroke rats served as controls while non-stroke rats represented shams. Cerebral blood flow (CBF) was evaluated by laser Doppler at baseline (prior to MCAO), during MCAO, and during reperfusion. Behavioral tests using the elevated body swing test was conducted at baseline, day 0 (day of stroke), and at days 1 and 3 after stroke. Animals that received exercise displayed typical alterations in CBF after stroke, but exhibited improved motor performance compared to non-exercise rats. Exercised stroke rats showed a reduction in infarct size and an increased number of surviving cells in the peri-infarct area, with a trend towards prolonged duration of the exercise. Immunofluorescence staining and Western blot analysis of the peri-infarct area revealed increased levels of endothelial markers/angiogenesis markers, VEGF, VEGFR-2, and Ang-2, and endothelial progenitor cell marker CD34+ in exercise groups compared with the controls. These results demonstrated that prophylactic exercise affords neuroprotection possibly by improving cerebrovascular potency.
Keywords: Ischemic stroke; Neuroprotection; Physical activity; Stem cells; Vasculature.