Virulent strains of Escherichia coli (Avian Pathogenic E. Coli: APEC) can cause initial infection of the respiratory tract in chickens potentially leading to systemic infection called colibacillosis, which remains a major cause of economic losses in the poultry industry. The role of epithelial lung cells as first targets of APEC and in initiating the innate immune response is unclear and was investigated in this study. APEC was able to adhere and subsequently invade cells from the chicken lung epithelial CLEC213 cell line exhibiting pneumocyte type II-like characteristics. Invasion was confirmed using confocal microscopy after infection with GFP-labelled APEC. Moreover, the infection resulted in a significant increase in IL-8 gene expression, a chemo-attractant of macrophages and heterophils. Gene expression of interferon α and β were not significantly upregulated and chicken Surfactant Protein A, also did not show a significant upregulation on either gene or protein level. The immune response of CLEC213 cells towards APEC was shown to be similar to stimulation with E. coli LPS. These results establish CLEC213 cells as a novel model system for studying bacterial infection of the lung epithelium and show that these cells may play a role in the initial innate response towards bacterial pathogens.
Keywords: Chicken pneumocytes; Escherichia coli; Infection; Innate immunity.
Copyright © 2019 The Authors. Published by Elsevier B.V. All rights reserved.