Coexistence of Ferromagnetic and Stripe Antiferromagnetic Spin Fluctuations in SrCo_{2}As_{2}

Phys Rev Lett. 2019 Mar 22;122(11):117204. doi: 10.1103/PhysRevLett.122.117204.

Abstract

We use inelastic neutron scattering to study energy and wave vector dependence of spin fluctuations in SrCo_{2}As_{2}, derived from SrFe_{2-x}Co_{x}As_{2} iron pnictide superconductors. Our data reveal the coexistence of antiferromagnetic (AF) and ferromagnetic (FM) spin fluctuations at wave vectors Q_{AF}=(1,0) and Q_{FM}=(0,0)/(2,0), respectively. By comparing neutron scattering results with those of dynamic mean field theory calculation and angle-resolved photoemission spectroscopy experiments, we conclude that both AF and FM spin fluctuations in SrCo_{2}As_{2} are closely associated with a flatband of the e_{g} orbitals near the Fermi level, different from the t_{2g} orbitals in superconducting SrFe_{2-x}Co_{x}As_{2}. Therefore, Co substitution in SrFe_{2-x}Co_{x}As_{2} induces a t_{2g} to e_{g} orbital switching, and is responsible for FM spin fluctuations detrimental to the singlet pairing superconductivity.