The development of aqueous Wittig methodology for the synthesis of α-methylstilbenes using tripropylphosphine-derived phosphonium salts is described. The Wittig olefination reaction was high yielding and allowed isolation of stilbenes by simple filtration and washing with water. The novel phosphonium salts employed were accessed via a highly efficient, regioselective addition of hydrogen bromide to styrenes. Application of the α-methylstilbenes toward the synthesis of a collection of stilbenoid-triazoles is reported and their inhibition of CYP450 19A1 (aromatase) investigated. The overall structure-activity profile provided additional evidence on the aryl halide-ketone bioisostere hypothesis and identified 6c as a potent inhibitor of aromatase in vitro (Ki = 8 nM).
Keywords: Anti-cancer; Aqueous chemistry; Aromatase; Stilbene; Wittig reaction.
Copyright © 2019 Elsevier Ltd. All rights reserved.