Plant-soil feedbacks contribute to vegetation dynamics by species-specific interactions between plants and soil biota. Variation in plant-soil feedbacks can be predicted by root traits, successional position, and plant nativeness. However, it is unknown whether closely related plant species develop more similar plant-soil feedbacks than more distantly related species. Where previous comparisons included plant species from distant phylogenetic positions, we studied plant-soil feedbacks of congeneric species. Using eight intra-continentally range-expanding and native Geranium species, we tested relations between phylogenetic distances, chemical and structural root traits, root microbiomes, and plant-soil feedbacks. We show that root chemistry and specific root length better predict bacterial and fungal community composition than phylogenetic distance. Negative plant-soil feedback strength correlates with root-feeding nematode numbers, whereas microbiome dissimilarity, nativeness, or phylogeny does not predict plant-soil feedbacks. We conclude that root microbiome variation among congeners is best explained by root traits, and that root-feeding nematode abundances predict plant-soil feedbacks.