Levels of circulating insulin cell-free DNA in women with polycystic ovary syndrome - a longitudinal cohort study

Reprod Biol Endocrinol. 2019 Apr 5;17(1):34. doi: 10.1186/s12958-019-0478-7.

Abstract

Background: Women with Polycystic Ovary Syndrome (PCOS) present a heterogeneous reproductive and metabolic profile with an increased lifetime risk of Type 2 Diabetes (T2D). Early biomarkers of these metabolic disturbances in PCOS women have not been identified. The abundance of circulating insulin gene promotor cell-free DNA (INS cfDNA) was shown to be valuable as a predictive biomarker of β-cell death in individuals with Type 1 diabetes (T1D) as well as with gestational diabetes. Since β-cell death is common to the development of T1D as well as in T2D, we aimed to investigate if insulin-coding DNA is more abundant in circulation of PCOS women (vs Controls) and if their levels change after 6 yr. follow-up as a potential measure to predict future T2D.

Methods: A cohort of 40 women diagnosed with PCOS according to Rotterdam 2003 criteria and eight healthy controls were examined at baseline and 6 years follow-up. Clinical measurements for evaluation of glucose homeostasis as well as blood/serum samples were obtained at each visit. Methylated and unmethylated INS cfDNA were quantified using droplet digital PCR. Differences between groups were assessed using Kruskall-Wallis test and Wilcoxon Signed rank test.

Results: At baseline, there was no detectable difference in copy number (copies/μL) of methylated (p = 0.74) or unmethylated INS cfDNA (p = 0.34) between PCOS and Control groups. At follow up, neither methylated (p = 0.50) nor unmethylated INScfDNA levels (p = 0.48) differed significantly between these groups. Likewise, when pooling the groups, there was no difference between baseline and follow up, in terms of copies of methylated or unmethylated INS cfDNA (p = 0.38 and p = 0.52, respectively). There were no significant correlations between counts of unmethylated or methylated cfDNA and the clinical measurements of β-cell function and pre-diabetes.

Conclusion: The circulating level of unmethylated and methylated INScfDNA is similar between PCOS and Controls and cannot be used to predict islet β-cell loss and progression to Type 2 diabetes in a 6-year follow-up.

Trial registration: The Danish Data Protection Agency (REG-31-2016. Approval: 01-12-2015) and by the Danish Scientific Ethical committee of Region Zealand (Journal no. SJ-525. Approval: 13-06-2016), Clinicaltrials.gov, ( NCT03142633 , registered 1. March, 2017, Retrospectively registered).

Keywords: Androgens; Circulating free DNA; Demethylation; Glucose tolerance; Insulin promoter CpG methylation; PCOS; Testosterone.

MeSH terms

  • Adult
  • Biomarkers / blood
  • Cell-Free Nucleic Acids / blood*
  • DNA Methylation
  • Diabetes Mellitus, Type 2 / diagnosis*
  • Female
  • Humans
  • Insulin / genetics*
  • Longitudinal Studies
  • Polycystic Ovary Syndrome / metabolism*

Substances

  • Biomarkers
  • Cell-Free Nucleic Acids
  • Insulin

Associated data

  • ClinicalTrials.gov/NCT03142633