Synergistic Effects of Multiple Environmental Factors on Degradation of Hydrogenated Nitrile Rubber Seals

Polymers (Basel). 2018 Aug 10;10(8):897. doi: 10.3390/polym10080897.

Abstract

Degradation tests of hydrogenated nitrile rubber seals, often used as sealing components in hydraulic systems, were conducted under the free and compression state in air and hydraulic oil at three elevated temperatures for several days to investigate the synergistic effects among three factors. The crosslinking and chain scission reactions both occurred simultaneously at higher temperature during the degradation process, and crosslinking predominated for most cases. Additionally, the synergistic effect between compression stress and hydraulic oil further slowed the degradation rate by limiting oxygen access. However, the higher temperature and hydraulic oil both promoted the formation of oxidation products, whereas the compression stress restrained the formation of amide groups. The fracture morphology results show that the defects gradually formed on the fracture surface, especially for the uncompressed specimens. The increase of the compression set aged in air was more than that in hydraulic oil, implying the more serious degradation. Moreover, rubber seals under the synthetic effect of three environmental factors presented the minimum degradation level. The degradation of the compressed and uncompressed specimens exposed to hydraulic oil is more serious than that of specimens exposed to air.

Keywords: compressive stress; crosslinking; degradation; elevated temperature; hydraulic oil; hydrogenated nitrile rubber seals.