Cellulose nanocrystals (CNCs) exhibit outstanding gas barrier properties, which supports their use as a biobased and biodegradable barrier coating on flexible food packaging materials. As highly hydrophilic biopolymers, however, CNCs have a strong sensitivity to water that can be detrimental to applications with fresh foods and in moist conditions due to the loss of barrier properties. In this work, the oxygen and water vapor permeability of polyethylene terephthalate (PET) films coated with CNCs obtained from cotton linters were measured at varying levels of relative humidity, both in adsorption and desorption, and from these data, the diffusion and solubility coefficients were estimated. Therefore, the characterization of CNCs was aimed at understanding the fundamentals of the water-CNCs interaction and proposing counteractions. The CNCs' moisture absorption and desorption isotherms at 25 °C were collected in the range of relative humidity 0⁻97% using different techniques and analyzed through GAB (Guggenheim-Anderson-de Boer) and Oswin models. The effects of moisture on the water status, following the freezable water index, and on the crystal structure of CNCs were investigated by Differential Scanning Calorimetry and by X-ray Powder Diffraction, respectively. These findings point to the opportunity of coupling CNCs with hydrophobic layers in order to boost their capabilities as barrier packaging materials.
Keywords: cellulose nanocrystals; flexible packaging materials; moisture effects; oxygen barrier.